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THE NATURE OF THE MOTION OF A GYROSCOPE IN THE

PRESENCE OF DISPLACED CENTER OF GRAVITY AND FRICTION*

S. I. Makarlkhin

Leningrad Institute of Aviation Instrument Manufacture

A study of the effect of displaced center of
gravity in a gyroscopic system in the presence
of friction and correction momenta upon the
motion of a gyroscope with a horizontal external
axis. The problem is solved using the concept
of the "mapping point." The effects of dis-
placed center of gravity, correction and fluid
friction on the motion of a gyroscope with a
constant correction characteristic when the
cantilever is fixed are examined.

An examination is made of the effect of displaced center of

gravity in a gyroscopic system in the presence of friction and correc-

tion momenta on the motion of a gyroscope with a horizontal external

axis. An accurate solution to the problem on the effect of forces

of dry friction on the behavior of a gyroscope mounted on a fixed

cantilever was obtained by Ye. L. Nikolai [1, 21. This problem was

w Reported at the III Joint Conference of the Institute of
Higher Learning on Gyroscopic Technology. The report was called
"The Motion of a Gyrovertical in the Presence of Friction and Gaps
in the Support Bearings."
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solved using the notion of the "mapping point." D. M. Klimov, using

this concept, examined the problem on the behavior of a gyroscope on

* a fixed cantilever under the assumption that friction momenta in the

support axes were proportional to the dynamic reactions (..

N. V. Butenin examined this problem in the presence of fluid as

well as dry friction by a more general method; in addition, he solved

some new problems for a gyroscope with a vertical external axis [4,

5].

In the present work the problem is solved for a gyroscope with

a horizontal external axis by using a "mapping point."

An examination is made of the effect of displaced center of

gravity, correction and fluid friction on the motion of a gyroscope

with a constant correction characteristic when the cantilever is

fixed.

The Effect of Displaced Center of Gravity, Correction and

Fluid Friction on the Motion of a Gyroscope

The equations of motion of a free gyroscope on a fixed canti-

lever have the form [6]:

I.S+I cosf. 'M 1 }1(
I1 V-IQcos*. 4=M6 j 1

Let MB and MC, the momenta relative to the axes of the internal and

external frames, respectively, be determined by the displacements of

the center of gravity of a gyroscopic system and by its weight [7],

by the presence of fluid driction in the support axes, and also by

correction momenta with a constant correction characteristic [8].
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Hence, let us represent the right-hand members of Eqs. (1) in the form

M-= M-3 + MIT + M,.
Me-- M,3 + M,+ MJ ((2)

where

M,a =(ap + b,) cos f. Qcos ' + )
+[a-(ap+bj)sinOJ ] rcosP.snft ;

M=(asn'+b)G, (3)

is the radial displacement on the main axis;

bp the radial displacement on the internal axis;
a the axial displacement along the main axis;

b the axial displacement along the interal axis;

Gg the weight of the gyroscope;

T and 4 the angles of turning of the external and internal frames,
respectively;

=4x - - 0 the moment of fluid friction relative to the axis of the
internal frame;

MCT - - pY the moment of fluid friction relative to the axis of the
external frame;

a and the coefficients of fluid friction;

MBK - -k sign I and MCK - kc sign 4 the correction momnta;

kB and kc the coefficients of the correction momenta.

Assuming that the angles T and 4 are small and at 4 = 0 the

external and internal frames are perpendicular, we may write

M.-aG &+5- *-k- - sign I
M=aOV4 A-P1+ksjgnO 1' (4)

where G is the weight of the gyroscope rotor;

B - apQ + bp(G +

GBK the weight of the internal cardan ring of the support;

A - b(G + -X -3
1ITD-TT-62-189/i+2+4-3



Substituting the found values from (4) of the momenta M. and M.

into Eq. (1), we may write

i +lQ--OO: - a -k.signW+3 }
Jet- 196-aOW'= Pt+ksignb+A"()

Using the concept of the mapping point, in order to study

System (5) in general form, it follows to operate in four-dimensional

space, which represents considerable difficulties and deprives one of

the clearness of a geometrical picture of the motion of the mapping

point, therefore, let us examine System (5) without inertial terms

I Q' - a =.- a- k. sign W + B

Ib+aOV=P#-krsignO-A (6)

Let us transform (6) to the form:

dt +_. )' . + a A +ak,sip 0- 1 ksignW +aQ(I# +.)]*)

do 1-, -=I -,A-ksign"8 - PIing-aO(IQV-P] (-P)

Let kB > B and k < A. Let us examine the plane M the coordinate

plane) of System (6). The coordinate axes divide the plane $T into

four quadrants, in each of which Eqs. (7) have different forms. From

(7) it follows that the differential equation of the phase trajectories

is

do -- 1A- ig I *--pksignV-aO(Iv-9 ")
d-w I UIB+ i A . IgnI ifl[i+O s IOg S(l1 + IV) (8)

The singular points of Eq. (8) on the plane 4O will be the

same points at which the following conditions are fulfilled simultan-

eously:
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4PaOF - lG " +p B - I1 A -Ispk sign -p(k.sign 9 0 )a0196+ aOaeE-IQB +a A +&ksign8_Ilk.sign _ " (9

These points (singular points) for the initial system correspond to

equilibrium states. The coordinates of the singular points are found

from the expressions

&,- 1o (10)

where K = 1, 2, 3, 4 is the number of the corresponding quadrant.

For the 4OT coordinate system

J' > 0, T1 > 0; 42 > 0; T2 < 0; $3 < 0; T3 < 0; 44 < 0, T4 > 0.

From (10) we find

41 > 0; 42 < 0; 43 < 0; 44 > 0,

11 < 0; T2e < 0J 13 < 0; T4 < 0.

Hence it follows that beyond the coordinate axes Eq. (8) has only

one singular point in third quadrant, which corresponds to the

equilibrium position of the gyroscope frames after their deflection

at angles equal to respectively

.,, (11)

The nature of the singular point in this case is determined by the

Eqs. [9, 10]
t

S -(n + n2 ) S + X2 + nn 2 = 0, (12)

where
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a. ap _ Oid7+v)w; no= - (13)
£P(I)I; sp+(IB)' ; • p+(IO)-' *(3

Here p = (n + n2) < 0 and q = n1ng + > 2 > 0, therefore, the roots

of Eq. (12) S2 and S2 will be complex conjugates; at Re[S] > 0 the

singular point is an unstable focal point.

Integrating Eq. (8), we find sets of integral curves. Let us

first of all substitute the variables in Eq. (8)

---- (14)

Equation (8) takes the form

#I= -) .~ (15)

After integration we obtain

2a 'otn (16)

where a +=. ; =

C is the arbitrary constant of integration.

In the old variables T and $ we shall have:

(v -v.),+ 2 It (MF - ). -. )+(- ,=

(1T)

--- '-aretan (b- v-)

The set of curves of (17) represent a spiral issuing .fro the

corresponding point with coordinates Y - Ik. * - k in each quadrant.
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In order to Judge the behavior of the angles of deflection

T and # as a function of the initial conditions, integral curves may

be constructed on the plane U4 and the motion of the mapping point

traced, Let us construct a set of integral curves of (17). For the

b third quadrant the curves will have the form:

_ _- a c t a- . ( 1 8 )

Let us find the integral curve in the third quadrant which passes

through the point W---- A 8=0 • For this curve

(b~p..c .jarctano - :(9

and therefore, the constant of integration

C=( 3 ej~) (20)

Substituting the value of (20) into Expression (18), we find the

equation of the curve sought after in the form

W=N(,-)'" 9( .A + --.18 8 +

23 (21)

Let us determine under what conditions this integral curve will be
ICB + B

tangent to the -axis at the point Y - 0; 4- -a--. This

condition is

( j"7- - arctan

-7-



that is
- arotan

(- k + A)' =23 (k.+3 )'e (22)

Let us note that in the absence of fluid friction this condition

would have the form

~ 4.8.

Expression (22) may be rewritten as

I~ arctan~

A - c - .8 (k'+t) e (23)

Obviously, if

I arctanl
A<k-4,8(k. +W) M,

(24)

(A is the constant component of the momentum about the external axis,

which is dependent upon displacement of the center of gravity), then

the curve of (21) does not intersect the $-axis; if

arctan j

,>h,-4,A(h+ 3 )e

then the curve of (21) will intersect the 4-axis.

The equation of the integral curve passing through the point7 = , # -- + B

Y M 0, 4 - + B~ (in the third quadrant) is found as before:

G+arctan
/A-k.9 =tv(25)

Hence the value of the arbitrary constant

C c - ,- arctan



and the equation of the curve sought after will have the form

r artan e-arotan + (
e hec-A

(27)
The condition under which this curve will be tangent to the t-axis at

h6 - Athe pointW V ad , $ - 0 (tangency on the strength of Eq. (8)) has

the form of (23). This mans that when condition (24) is fulfilled,,

the curve of (27) will intersect the I-axis; when condition (25) is

fulfilled, the curve (27) will not intersect the !-axis. In the plane

14 there will be on the Y and $ axes, segments of the Junction of

the motion of the mapping point along the integral curves. On the
-kc+ A k

$-axis this section is from h+A to h . On the $-axis the
section is from - to _Bh: When the mapping point hits the

section of the Junction of motion on the T-axis, the equations of

motion (7) will be

(we assume that + .i- I*

4 - +(28)

where

WT #%A ap+ N

From Eq. (28) it follows that the mapping point, having hit the

T-axis in the section in question, will move along the 1-axis in the

direction of increasing to the point 1 - " - 0, at which

"9-



point it leaves the !-axis.

a$

Fig. 1.

'When the mapping point strikes a similar section or the $-axis,

Eq. (7) will be

<0 (30)

whlere .0 aG

-10-



Therefore, motion along this section will go to the side of

. decreasing $ to a point with coordinates 4 - _!Y_ . W-00 after

which the mapping point will leave the $-axis. The qualitative

picture of the plane T4 for Case (24) is shown in Fig. la and for

Case (25) in Pig. lb. Figure 2 shows the motion of the mapping point

under various starting conditions.

Fig. 2.

From an examination of Fig. 2 it follows that at sufficiently

large initial deflections, the motion of the system will be damped

and, conversely, at sufficiently small initial deflections in a

certain vicinity near a singular point, the motion of the point will

be rising. Starting from this, conclusions may be made about the

essentialness of a closed phase trajectory, with respect to which

all remaining phase trajectories are coiled. This closed phase

trajectory corresponds to the periodic motion of the system, wherein

the parameters of this motion are not functions of the initial

-11-



conditions and are determined by the parameters of the dynamic

system. It is obvious that this is a stable limited cycle, corre-

spo iding to selfoacillations.

Let us examine the physical picture of the motion of the axis of

the gyroscope at zero starting conditions, i.e., assuming

M,-0= , 0 0. (32)

In this case the mapping point will at first move alnng the $-axis

to the point 7-0,- + This means that the external frame will.

be fixed, while the internal frame will move according to the law

S . , - (33)

* The motion time of the interal frame when the external frame is

fixed is found from the condition

i.e.,

hence

t - In(I- Ja), (35)

where

pw M A + /g n , Y-"

Further, the mapping point will move along the spiral of (21). The

deflection angles of the frames will vary according to the law found

by integrating Expressions (7). These expressions are more conven-
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iently reduced to the form

6=n2#-kW + M._- 19 n. sign&o- P m.,ig

S+- (36)

Thus at zero initial conditions

•= +- (COS k,,. Sint , + owr,_wn-
.=[- . - ,- U (,7)

-; o., ¢ ,+MAB+,QJ,,+P ] '
where

q ) (w-I).- (, P + IQ)M.- ,,MAX +NA;

hl= _V!; Lann2 +.'

Thus, at any initial values of 4 and Y the motion of the mapping

point, and for the case under examination the motion of the vertex

of the groscope in the plane OYS, reduces to the setting up of

selfoscillations.

At kB > B and lC > A, from Expression (10) it follows that Eq.

(7) has no singular points outside of the coordinate axes. The

intersection of the sections of the Junction of motions along the

integral curves will be at the origin of the coordinates 014. At

any initial values of ! and 4 the mapping point will arrive at some

section of motion Junction.

Figure 3 shows the position of integral curves on the plane It

for the case in question.
P

Taking the inertia of the support frmes into account, the

equations of motion of a free gyroscope set up on the growid have

the form of (7)

-.13-



-3 C. 1): W) (38)

* Substituting the values of the momenta MB and MC into Eqs. (38), we

obtain

I.i lgt--aOO ,6 =- I gin p -- In TP + I

1,# - IQ6.(Q9cost - a)'W+ PV=hsl gn#+ A (39)

Without inertial terms, Eqs. (39) have the form

S" - ad 0 + 6 = -
- 1* si ~n ' ,

* Ju6 +(ao),r - p*=-k .Ign- A I'(1,o)

A lwhere

1-I -IG, sln 1 (11)
(a0), = aG - 129 Cos op

Formally, q. (4-0) have the form of Eqs. (6). Carrying out all

operations successively with Eqs. (40) done earlier for the coordi-

nates of the sMngular points, we obtain equations, similar to (10),

in the form
k S stign W -Sol

NG j -- I U2 Ce f?

G =--r W-- coosi

(412)

Let us note that the case of aGIQQtCosq) is not examined here.

Here, taking the conditions aG> IM13 cos 4; ICE> B - I M3 sin i;

< A, we arrive at the previous case with substitution in Expres-

sions (11 to 37) of B, and (aG)1 , determined by Formulas (i1) far
9

B and aG. Naturally, the zones of motion Junction in Figs. la and lb

FTDTT-62-189/i+2+4 .14-



and 2 will have boundaries at which B1 and (aG)1 act instead of B

and aG. Here, as in the case when the gyroscope is mounted on a

fixed cantilever at any initial values of $ and ! the motion of the

mapping point as well as that of the vertex of the gyroscope in the

plane reduces to the setting up of selfoscillations.

ig. 3.

As is known [11, 12, 13], equations of the form of (5) written

without correction components kB sign T and kC sign $ represent an

unstable system. In fact, in view of the fact that the center of

gravity of our gyroscopic system is above its support point (a is

negative), stability may be obtained only artificially, for example,

by introducing correction momenta, as was done above.

Obviously, without correction momenta, selfoscillation conditions

would not set in and this dynamic system would be unstable.

n'D..TT-62-189/1+2-4 -15-
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